A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life.
Within the field of organic chemistry, the definition of natural products is usually restricted to isolated from natural sources that are produced by the pathways of primary or secondary metabolism.
Natural sources may lead to basic research on potential bioactive components for commercial development as in drug discovery. Although natural products have inspired numerous drugs, drug development from natural sources has received declining attention in the 21st century by pharmaceutical companies, partly due to unreliable access and supply, intellectual property, cost, and profit concerns, seasonal or environmental variability of composition, and loss of sources due to rising extinction rates. Despite this, natural products and their derivatives still accounted for about 10% of new drug approvals between 2017 and 2019. Natural products represent 100*(506/1881) = 27% of new drug approvals from 01JAN81 to 30SEP19. From Figure 9, the percentage was ~10% for 2017-2019.
Natural products may be classified according to their biological function, biosynthetic pathway, or source. Depending on the sources, the number of known natural product molecules ranges between 300,000 and 400,000.
Natural products especially within the field of organic chemistry are often defined as primary and secondary metabolites. A more restrictive definition limiting natural products to secondary metabolites is commonly used within the fields of medicinal chemistry and pharmacognosy.
Primary metabolites involved in energy production include enzymes essential for respiratory and photosynthetic processes. These enzymes are composed of and often require non-peptidic cofactors for proper function.
Enzymatic cofactors that are primary metabolites include several members of the vitamin B family. For instance, Vitamin B1 (thiamine diphosphate), synthesized from 1-deoxy-D-xylulose 5-phosphate, serves as a coenzyme for enzymes such as pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, and transketolase—all involved in carbohydrate metabolism. Vitamin B2 (riboflavin), derived from ribulose 5-phosphate and guanosine triphosphate, is a precursor to FMN and FAD, which are crucial for various redox reactions. Vitamin B3 (nicotinic acid or niacin), synthesized from tryptophan, is an essential part of the coenzymes NAD and NADP, necessary for electron transport in the Krebs cycle, oxidative phosphorylation, and other redox processes. Vitamin B5 (pantothenic acid), derived from α,β-dihydroxyisovalerate (a precursor to valine) and aspartic acid, is a component of coenzyme A, which plays a vital role in carbohydrate and amino acid metabolism, as well as fatty acid biosynthesis. Vitamin B6 (pyridoxol, pyridoxal, and pyridoxamine, originating from erythrose 4-phosphate), functions as pyridoxal 5′-phosphate and acts as a cofactor for enzymes, particularly transaminases, involved in amino acid metabolism. Vitamin B12 (cobalamins) contains a corrin ring structure, similar to porphyrin, and serves as a coenzyme in fatty acid catabolism and methionine synthesis.
Other primary metabolite vitamins include retinol (vitamin A), synthesized in animals from plant-derived via the mevalonate pathway, and ascorbic acid (vitamin C), which is synthesized from glucose in the liver of animals, though not in humans.
DNA and RNA, which store and transmit genetic information, are synthesized from primary metabolites, specifically and carbohydrates.
First messengers are signaling molecules that regulate metabolism and cellular differentiation. These include hormones and growth factors composed of peptides, , , , and . These first messengers interact with cellular receptors, which are protein-based, and trigger the activation of second messengers to relay the extracellular signal to intracellular targets. Second messengers often include primary metabolites such as cyclic nucleotides and diacyl glycerol.
Secondary metabolites have a broad range of functions. These include that act as social signaling molecules with other individuals of the same species, communication molecules that attract and activate symbiotic organisms, agents that solubilize and transport nutrients (siderophores etc.), and competitive weapons (allelochemicals, venoms, toxins etc.) that are used against competitors, prey, and predators.
General structural classes of secondary metabolites include , , , and .
Carbohydrates serve as a primary energy source for most life forms. Additionally, derived from simpler sugars are vital structural components, forming the of bacteria and plants.
During photosynthesis, plants initially produce , a three-carbon triose. This can be converted into glucose (a six-carbon sugar) or various (five-carbon sugars) through the Calvin cycle. In animals, three-carbon precursors like lactic acid or glycerol are converted into pyruvate, which can then be synthesized into carbohydrates in the liver.
During glycolysis, sugars are broken down into acetyl-CoA. In an ATP-dependent enzymatic reaction, acetyl-CoA is carboxylated to form malonyl-CoA. Acetyl-CoA and malonyl-CoA then undergo a Claisen condensation, releasing carbon dioxide to form acetoacetyl-CoA which is used by the mevalonate pathway to produce steroids. In fatty acid synthesis, one molecule of acetyl-CoA (the "starter unit") and several molecules of malonyl-CoA (the "extender units") are condensed by fatty acid synthase. After each round of elongation, the keto group is reduced, the intermediate alcohol dehydrated, and resulting enoyl-CoAs are reduced to acyl-CoAs. Fatty acids are essential components of that form cell membranes
The plant-derived fatty acid linoleic acid is converted in animals through elongation and desaturation into arachidonic acid, which is then transformed into various , including , , and . These eicosanoids act as signaling molecules, playing key roles in inflammation and .
Alternatively the intermediates from additional condensation reactions are left unreduced to generate poly-β-keto chains, which are subsequently converted into various polyketides. The polyketide class of natural products has diverse structures and functions
The shikimate pathway leads to the biosynthesis of aromatic amino acids (AAAs) — phenylalanine, tyrosine, and tryptophan. This pathway is vital as it connects primary metabolism to specialized metabolic processes, directing an estimated 20-50% of all fixed carbon through its reactions. It begins with the condensation of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), leading through several enzymatic steps to form chorismate, the precursor for all three AAAs.
From chorismate, biosynthesis branches out to produce the individual AAAs. In plants, unlike in bacteria, the production of phenylalanine and tyrosine typically occurs via the intermediate arogenate. Phenylalanine serves as the starting point for the phenylpropanoid pathway, which leads to a diverse array of secondary metabolites.
Beyond protein synthesis, AAAs and their derivatives have crucial roles in plant physiology, including pigment production, hormone synthesis, cell wall formation, and defense against various stresses. Because animals cannot synthesize these amino acids, the shikimate pathway has also become a target for herbicides, most notably glyphosate, which inhibits one of the key enzymes in this pathway.
The mevalonate (MVA) and methylerythritol phosphate (MEP) pathways produce the five-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are the building blocks for all terpenoids.
The MVA pathway, discovered in the 1950s, functions in eukaryotes, some bacteria, and plants. It converts acetyl-CoA to IPP via HMG-CoA and mevalonate, and is essential for steroid biosynthesis. , which lower cholesterol, work by inhibiting HMG-CoA reductase in this pathway. The MEP pathway, found in bacteria, some parasites, and plant chloroplasts, starts with pyruvate and glyceraldehyde 3-phosphate to produce IPP and DMAPP. This pathway is crucial for the synthesis of plastid terpenoids like and . Both pathways converge at IPP and DMAPP, which combine to form longer prenyl diphosphates like geranyl (C10), farnesyl (C15), and geranylgeranyl (C20). These compounds serve as precursors for a wide range of terpenoids, including , , and .
The diversity of terpenoids arises from modifications such as cyclization, oxidation, and glycosylation, enabling them to play roles in plant defense, pollinator attraction, and signaling.
Alkaloid biosynthesis generally follows four key steps: (i) synthesis of an amine precursor, (ii) synthesis of an aldehyde precursor, (iii) formation of an iminium cation, and (iv) a Mannich reaction-like reaction. These steps form the core structure of many alkaloids and represent the initial committed steps in their production. Amino acids such as tryptophan, tyrosine, lysine, arginine, and ornithine serve as essential precursors. Their accumulation is facilitated by mechanisms like increased gene expression, gene duplication, or the evolution of enzymes with broader substrate specificities. The biosynthesis of the tropane alkaloid cocaine follows this general pathway.
A key reaction in alkaloid biosynthesis is the Pictet-Spengler reaction, which is crucial for forming the β-carboline structure found in many alkaloids. This reaction involves the condensation of an aldehyde with an amine, as seen in the biosynthesis of strictosidine, a precursor to numerous monoterpene indole alkaloids.
, including cytochrome P450s and flavin-containing , play a vital role in modifying the core alkaloid structures through oxidation, contributing to their structural diversity and bioactivity. For instance, in the biosynthesis of morphine, oxidative coupling is essential for forming the complex polycyclic structures typical of these alkaloids. The biosynthetic pathways of alkaloids involve numerous enzymatic steps. For example, tropane alkaloids, derived from ornithine, undergo processes such as decarboxylation, oxidation, and cyclization. Similarly, the biosynthesis of isoquinoline alkaloids from tyrosine involves complex transformations, including the formation of (S)-reticuline, a key intermediate in the pathway.
Peptides and proteins are synthesized through protein synthesis or translation, a process involving transcription of DNA into messenger RNA (mRNA). The mRNA serves as a template for protein assembly on . During translation, transfer RNA (tRNA) carries specific amino acids to match with mRNA codons, forming peptide bonds to create the protein chain.
, such as oxytocin and vasopressin, are short amino acid chains that regulate physiological processes, including social bonding and water retention. Modified peptides include like and , characterized by their β-lactam ring structure, which is essential for their antibacterial activity. These compounds undergo complex enzymatic modifications during biosynthesis.
Cyanogenic glycosides are amino acid derivatives in plants that can release hydrogen cyanide when tissues are damaged, serving as a defense mechanism. Their biosynthesis involves converting amino acids into cyanohydrins, which are then glycosylated. are sulfur-containing compounds in cruciferous vegetables like broccoli and mustard plant. Their biosynthesis starts with amino acids such as methionine or tryptophan and involves adding sulfur and glucose groups. When tissues are damaged, glucosinolates break down into isothiocyanates, which contribute to the pungent flavors of these vegetables and offer potential health benefits.
Pharmacognosy provides the tools to detect, isolate and identify bioactive natural products that could be developed for medicinal use. When an "active principle" is isolated from a traditional medicine or other biological material, this is known as a "hit". Subsequent scientific and legal work is then performed to validate the hit (e.g. elucidation of mechanism of action, confirmation that there is no intellectual property conflict). This is followed by the hit to lead stage of drug discovery, where derivatives of the active compound are produced in an attempt to improve its potency and Toxicity. In this and related ways, modern medicines can be developed directly from natural sources.
Although traditional medicines and other biological material are considered an excellent source of novel compounds, the extraction and isolation of these compounds can be a slow, expensive and inefficient process. For large scale manufacture therefore, attempts may be made to produce the new compound by total synthesis or semisynthesis. Because natural products are generally secondary metabolites with complex chemical structures, their total/semisynthesis is not always commercially viable. In these cases, efforts can be made to design simpler analogues with comparable potency and safety that are amenable to total/semisynthesis.
Although most of the drugs derived from bacteria are employed as anti-infectives, some have found use in other fields of medicine. Botulinum toxin (from Clostridium botulinum) and bleomycin (from Streptomyces verticillus) are two examples. Botulinum, the neurotoxin responsible for botulism, can be injected into specific muscles (such as those controlling the eyelid) to prevent muscle spasm. Also, the glycopeptide bleomycin is used for the treatment of several cancers including Hodgkin's lymphoma, head and neck cancer, and testicular cancer. Newer trends in the field include the metabolic profiling and isolation of natural products from novel bacterial species present in underexplored environments. Examples include symbionts or endophytes from tropical environments, subterranean bacteria found deep underground via mining/drilling, and marine bacteria.
Because of these specific chemical-target interactions, venom constituents have proved important tools for studying receptors, , and enzymes. In some cases, they have also served as leads in the development of novel drugs. For example, teprotide, a peptide isolated from the venom of the Brazilian pit viper Bothrops jararaca, was a lead in the development of the antihypertensive agents cilazapril and captopril. Also, echistatin, a disintegrin from the venom of the saw-scaled viper Echis carinatus was a lead in the development of the antiplatelet drug tirofiban.
In addition to the terrestrial animals and described above, many marine animals have been examined for pharmacologically active natural products, with , sea sponge, , , and yielding chemicals with interesting analgesic, Antiviral drug, and anticancer activities. Two examples developed for clinical use include ω-conotoxin (from the marine snail Conus magus) and trabectedin (from the tunicate Ecteinascidia turbinata). The former, ω-conotoxin, is used to relieve severe and chronic pain, while the latter, ecteinascidin 743 is used to treat metastasis soft tissue sarcoma. Other natural products derived from marine animals and under investigation as possible therapies include the antitumour agents discodermolide (from the sponge Discodermia dissoluta), eleutherobin (from the coral Erythropodium caribaeorum), and the bryostatins (from the bryozoan Bugula neritina).
Between 1981 and 2019, the FDA approved 1,881 new chemical entities, of which 65 (3.5%) were unaltered natural products, 99 (5.3%) were defined mixture , 178 (9.5%) were natural product derivatives, and 164 (8.7%) were synthetic compounds containing natural product . Altogether, this accounts for 506 (26.9%) of all new approved drugs. Additionally, natural products and their derivatives often show higher success rates in later clinical trial phases and may have lower toxicity profiles compared to synthetic compounds.
Some of the oldest natural product based drugs are analgesics. The bark of the willow tree has been known since antiquity to have pain-relieving properties due to the natural product salicin, which in turn may be hydrolyzed into salicylic acid. A synthetic derivative acetylsalicylic acid better known as aspirin is a widely used pain reliever. Its mechanism of action is inhibition of the cyclooxygenase (COX) enzyme.
Numerous anti-infectives are based on natural products. The first antibiotic to be discovered, penicillin, was isolated from the mold Penicillium. Penicillin and related work by inhibiting the DD-transpeptidase enzyme that is required by bacteria to cross link peptidoglycan to form the cell wall.
Several natural product drugs target tubulin, which is a component of the cytoskeleton. These include the tubulin polymerization inhibitor colchicine isolated from the Colchicum autumnale (autumn crocus flowering plant), which is used to treat gout. Colchicine is biosynthesized from the amino acids phenylalanine and tryptophan. Paclitaxel, in contrast, is a tubulin polymerization stabilizer and is used as a chemotherapeutic drug. Paclitaxel is based on the terpenoid natural product taxol, which is isolated from Taxus brevifolia (the pacific yew tree).
A class of drugs widely used to lower cholesterol are the HMG-CoA reductase inhibitors, for example atorvastatin. These were developed from mevastatin, a polyketide produced by the fungus Penicillium citrinum.
The biological resource for drug discovery from natural products remains abundant, with small percentages of microorganisms, plant species, and insects assessed for bioactivity. In enormous numbers, bacteria and marine microorganisms remain unexamined. As of 2008, the field of metagenomics was proposed to examine genes and their function in soil microbes, but most pharmaceutical firms have not exploited this resource fully, choosing instead to develop "diversity-oriented synthesis" from libraries of known drugs or natural sources for lead compounds with higher potential for bioactivity.
Structure determination refers to methods applied to determine the chemical structure of an isolated, pure natural product. For instance, the chemical structure of penicillin was determined by Dorothy Hodgkin in 1945, work for which she later received a Nobel Prize in Chemistry (1964).
Modern structure determination often involves a combination of advanced analytical techniques. Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography are commonly used as primary tools for structure elucidation. High-resolution tandem mass spectrometry (MS/MS) also plays a crucial role, providing information on molecular formula and fragmentation patterns. For complex structures, computational methods are increasingly employed to assist in structure determination. This may include computer-assisted structure elucidation (CASE) platforms and in silico fragmentation prediction tools. Determination of the absolute configuration often relies on a combination of NMR data (coupling constants and nuclear Overhauser effect (NOE), chemical derivatization methods (e.g., Mosher's ester analysis), and spectroscopic techniques like vibrational circular dichroism (VCD), and optical rotatory dispersion (ORD). In cases where traditional methods are insufficient, especially for novel compounds with unprecedented molecular skeletons, advanced computational chemistry approaches are used to predict and compare spectral data, helping to elucidate the complete structure including stereochemistry.
Less complex natural products can often be cost-effectively synthesized from simpler chemical ingredients through total synthesis. However, not all natural products are suitable for total synthesis. The most complex ones are often impractical to synthesize on a large scale due to high costs. In these cases, isolation from natural sources may be sufficient if it provides adequate quantities, as seen with drugs like penicillin, morphine, and paclitaxel, which were obtained at commercial scales without significant synthetic chemistry.
When the desired product is difficult to obtain or modify to create analogs, a middle-to-late stage biosynthetic precursor or analog can sometimes be used to produce the final target. This approach, called semisynthesis or partial synthesis, involves extracting a biosynthetic intermediate and converting it into the final product using conventional chemical synthesis techniques.
This strategy offers two advantages. First, the intermediate may be easier to extract and yield higher amounts than the final product. For instance, paclitaxel can be produced by extracting 10-deacetylbaccatin III from T. brevifolia needles, followed by a four-step synthesis. Second, the semisynthetic process allows for the creation of analogues of the final product, as seen in the development of newer generation semisynthetic penicillins.
The first significant challenge to vitalism came in 1828 when German chemist Friedrich Wöhler synthesized urea, a natural product found in urine, by heating ammonium cyanate, an inorganic substance:
This reaction demonstrated that a life force was not needed to create organic substances. Initially, this idea faced skepticism, but it gained acceptance 20 years later when Adolph Wilhelm Hermann Kolbe synthesized acetic acid from carbon disulfide. Since then, organic chemistry has developed into a distinct field focused on studying carbon-containing compounds, which were found to be prevalent in nature.
This discrepancy was explained by Berzelius's theory of , which proposed that not only the number and type of elements but also the arrangement of atoms affects a compound's properties. This insight led to the development of structural theories, such as the radical theory of Jean-Baptiste Dumas and the substitution theory of Auguste Laurent. A definitive structure theory was proposed in 1858 by August Kekulé, who suggested that carbon is tetravalent and can bond to itself, forming chains found in natural products.
These pioneering studies laid the foundation for our understanding of natural product chemistry and biochemistry,
Footnotes
Citations
Classes
Function
Primary metabolites
Secondary metabolites
Biosynthesis
Carbohydrates
Fatty acids and polyketides
Aromatic amino acids and phenylpropanoids
Terpenoids and steroids
Alkaloids
Peptides, proteins, and other amino acid derivatives
Sources
Prokaryotic
Bacteria
Archaea
Eukaryotic
Fungi
Plants
Animals
Medical uses
Modern natural product-derived drugs
Limiting and enabling factors
Isolation and purification
Synthesis
Semisynthesis
Total synthesis
Biomimetic synthesis
Symmetry
Research and teaching
Chemistry
History
Foundations of organic and natural product chemistry
Isolation
Synthesis
Structural theories
Expanding the concept
Milestones
See also
Journals
Further reading
External links
|
|